Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Intervalo de año de publicación
1.
Pediatr Transplant ; 28(3): e14759, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38623871

RESUMEN

BACKGROUND: Invasive fungal disease (IFD) is a frequent complication in pediatric lung transplant recipients, occurring in up to 12% of patients in the first year. Risk factors for infection include impaired lung defenses and intense immunosuppressive regimens. While most IFD occurs from Aspergillus, other fungal conidia are continuously inhaled, and infections with fungi on a spectrum of human pathogenicity can occur. CASE REPORT: We report a case of a 17-year-old lung transplant recipient in whom Irpex lacteus and Rhodotorula species were identified during surveillance bronchoscopy. She was asymptomatic and deemed to be colonized by Irpex lacteus and Rhodotorula species following transplant. 2 years after transplantation, she developed a fever, respiratory symptoms, abnormal lung imaging, and histological evidence of acute and chronic bronchitis on transbronchial biopsy. After developing symptoms concerning for a pulmonary infection and graft dysfunction, she was treated for a presumed IFD. Unfortunately, further diagnostic testing could not be performed at this time given her tenuous clinical status. Despite the initiation of antifungal therapy, her graft function continued to decline resulting in a second lung transplantation. CONCLUSIONS: This case raises the concern for IFD in lung transplant recipients from Irpex species. Further investigation is needed to understand the pathogenicity of this organism, reduce the incidence and mortality of IFD in lung transplant recipients, and refine the approach to diagnosis and manage the colonization and isolation of rare, atypical fungal pathogens in immunocompromised hosts.


Asunto(s)
Infecciones Fúngicas Invasoras , Trasplante de Pulmón , Polyporales , Rhodotorula , Adolescente , Femenino , Humanos , Antifúngicos/uso terapéutico , Broncoscopía , Pulmón , Trasplante de Pulmón/efectos adversos , Receptores de Trasplantes
2.
Bioresour Bioprocess ; 11(1): 14, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647879

RESUMEN

Traditional autoclaving, slow degradation rate and preservation of biomass treated by fungi are the main factors restricting biological treatment. In our previous studies, strains with high efficiency and selective lignin degradation ability were obtained. To further solve the limiting factors of biological treatment, this paper proposed a composite treatment technology, which could replace autoclaves for fungal treatment and improve the preservation and utilization of fungal-pretreated straw. The autoclaved and expanded buckwheat straw were, respectively, degraded by Irpex lacteus for 14 days (CIL, EIL), followed by ensiling of raw materials (CK) and biodegraded straw of CIL and EIL samples with Lactobacillus plantarum for different days, respectively (CP, CIP, EIP). An expansion led to lactic acid bacteria, mold, and yeast of the samples below the detection line, and aerobic bacteria was significantly reduced, indicating a positive sterilization effect. Expansion before I. lacteus significantly enhanced lignin selective degradation by about 6%, and the absolute content of natural detergent solute was about 5% higher than that of the CIL. Moreover, EIL decreased pH by producing higher organic acids. The combination treatment created favorable conditions for ensiling. During ensiling, EIP silage produced high lactic acid about 26.83 g/kg DM and the highest acetic acid about 22.35 g/kg DM, and the pH value could be stable at 4.50. Expansion before I. lacteus optimized the microbial community for ensiling, resulting in EIP silage co-dominated by Lactobacillus, Pediococcus and Weissella, whereas only Lactobacillus was always dominant in CP and CIP silage. Clavispora gradually replaced Irpex in EIP silage, which potentially promoted lactic acid bacteria growth and acetic acid production. In vitro gas production (IVGP) in EIL was increased by 30% relative to CK and was higher than 24% in CIL. The role of expansion was more significant after ensiling, the IVGP in EIP was increased by 22% relative to CP, while that in CIP silage was only increased by 9%. Silage of fungal-treated samples reduced methane emissions by 28% to 31%. The study demonstrated that expansion provides advantages for fungal colonization and delignification, and further improves the microbial community and fermentation quality for silage, enhancing the nutrition and utilization value. This has practical application value for scaling up biological treatment and preserving the fungal-treated lignocellulose.

3.
Heliyon ; 9(8): e18741, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37554783

RESUMEN

Polycystic ovarian syndrome (PCOS) is one of the commonest endocrinopathies in childbearing women. The research was conducted to assess the impact of Irpex lacteus polysaccharide (ILP, 1000 mg/kg) on the letrozole (1 mg/kg)-induced PCOS model in female rats. Metformin (Met, 265 mg/kg) as the positive control. The study suggested that ILP restored the estrous cycle in rats with PCOS as well as lowered relative ovarian weight and body weight, in comparison to normal. Rats with PCOS showed improvement in ovarian structure and fibrosis when given ILP. ILP decreased the testosterone (T), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), total cholesterol (TC), luteinizing hormone (LH), homeostasis model assessment-insulin resistance (HOMA-IR), fasting blood glucose (FBG), and insulin (INS) levels and elevated the follicle-stimulating hormone (FSH) and estrogen (E2) levels in PCOS rats. In addition, ILP increased the content of superoxide dismutase (SOD) in serum and the antioxidant enzymes (Prdx3, Sod1, Gsr, Gsta4, Mgst1, Gpx3, Sod2 and Cat) expression levels in the ovaries and decreased the serum expression of malondialdehyde (MDA). In addition, ILP treatment slowed down the process of the fibrosis-associated TGF-ß1/Smad pathway and downregulated α-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF) levels in PCOS rats ovaries. According to these findings, ILP may be able to treat letrozole-induced PCOS in rats by ameliorating metabolic disturbances, sex hormone levels, oxidative stress, and ovarian fibrosis.

4.
Bioresour Technol ; 385: 129376, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37355140

RESUMEN

In order to achieve an efficient microbial material with dual functions of self-immobilization and sulfamethazine (SMZ) degradation, this study explored the pelletization technique utilizing mycelium fragments of Irpex lacteus WRF-IL and systematically examined the pellets formation conditions and degradation capability. The Box-Behnken design results demonstrated that pure mycelium fragments, broken by frosted glass beads, could be rapidly self-immobilized to form white rot mycelial pellets (WRMPs) within 24 h, serving as the pelleting core. These WRMPs could completely remove SMZ as the sole carbon source within 20 h. The addition of sucrose expedited this process, achieving complete removal within only 14 h. Kinetic analysis showed that WRMPs could potentially remove SMZ at higher concentrations (>25 mg/L). Biodegradation was the primary pathway of SMZ removal. Seven intermediates were identified by QTOF LC/MS, and three transformation pathways initiated by SO2 overflow, molecular rearrangement, and aniline moiety oxidation were deduced.


Asunto(s)
Carbono , Sulfametazina , Sulfametazina/metabolismo , Carbono/metabolismo , Cinética , Biodegradación Ambiental , Micelio/metabolismo
5.
J Agric Food Chem ; 71(21): 8104-8111, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37204864

RESUMEN

In contrast to O2, H2O2 as the cosubstrate for lytic polysaccharide monooxygenases (LPMOs) exhibits great advantages in industrial settings for cellulose degradation. However, H2O2-driven LPMO reactions from natural microorganisms have not been fully explored and understood. Herein, secretome analysis unraveled the H2O2-driven LPMO reaction in the efficient lignocellulose-degrading fungus Irpex lacteus, including LPMOs with different oxidative regioselectivities and various H2O2-generating oxidases. Biochemical characterization of H2O2-driven LPMO catalysis showed orders of magnitude improvement in catalytic efficiency compared to that of O2-driven LPMO catalysis for cellulose degradation. Significantly, H2O2 tolerance of LPMO catalysis in I. lacteus was an order of magnitude higher than that in other filamentous fungi. In addition, natural reductants, gallic acid, in particular, presented in lignocellulosic biomass could sufficiently maintain LPMO catalytic reactions. Moreover, the H2O2-driven LPMO catalysis exhibited synergy with canonical endoglucanases for efficient cellulose degradation. Taken together, these findings demonstrate the great application potential of the H2O2-driven LPMO catalysis for upgrading cellulase cocktails to further improve cellulose degradation efficiency.


Asunto(s)
Basidiomycota , Polyporales , Peróxido de Hidrógeno/metabolismo , Polisacáridos/metabolismo , Polyporales/metabolismo , Oxigenasas de Función Mixta/metabolismo , Basidiomycota/metabolismo
6.
Nat Prod Res ; 37(13): 2243-2247, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35147448

RESUMEN

A new antifungal butenolide irperide (1) along with five known compounds were isolated from the co-culture of endophyte Irpex lacteus and pathogenic Nigrospora oryzae. The structure of 1, including the absolute configuration, was elucidated by analysis of NMR, HR-ESI-MS data and ECD spectra. Compounds 1, 4 and 6 exhibited significant antifungal activity against Aspergillus fumigatus, with MIC values of 1, 2 and 1 µg/mL, respectively.


Asunto(s)
Antifúngicos , Ascomicetos , Antifúngicos/farmacología , Antifúngicos/química , Ascomicetos/química
7.
J Sci Food Agric ; 103(4): 1800-1809, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36317244

RESUMEN

BACKGROUND: Acid and thermal stabilities are important properties for the preparation of acidic protein beverage. It is an important method for enzymatic modification to improve the functional properties of protein. Irpex lacteus protease showed a selective hydrolysis to soy proteins. The purpose of this study was to investigate the mechanism of enzymatic hydrolysis and its effects on acid and thermal stabilities of soy proteins. RESULTS: The I. lacteus protease selectively hydrolyzed the α and α' subunits of the native soybean ß-conglycinin (7S globulin) to produce products that presented as the 55 kDa band upon sodium dodecyl sulfate polyacrylamide gel electrophoresis. The amino acid sequences of 55 kDa polypeptides were analyzed in gel multi-enzyme digestion followed by liquid chromatography-mass spectrometry. By matching the multi-enzyme digestion peptides with the published polypeptide chain sequences of the α and α' subunits, it was confirmed that the 55 kDa polypeptides were formed by eliminating amino acid residues on both sides of the N- and C-terminals. From the published protein structure database (https://www.uniprot.org/), it is known that the cleaved peptide bonds were in extension regions. Non-selective enzyme hydrolysis of both ß-conglycinin (7S globulin) and glycinin (11S globulin), with corresponding drastic increases in the degree of hydrolysis, was observed when the substrates were preheated to the denaturation degree of 40% and above. However, 55 kDa hydrolyzed products and B polypeptides showed some extent of resistance to the proteolysis by I. lacteus protease even if denaturation degree was 100%. Both selective and non-selective hydrolysis of soy proteins by I. lacteus protease improved the acid and heat stabilities under the same hydrolysis conditions (enzyme/substrate ratio, time, and temperature). CONCLUSION: Enzymatic hydrolysis of soybean proteins by the I. lacteus protease can effectively improve the acid and thermal stabilities of proteins. This discovery is significant to avoid aggregation during processing in the beverage industry. In the near future, the protease has potential application value for modification of other proteins. © 2022 Society of Chemical Industry.


Asunto(s)
Globulinas , Proteínas de Soja , Proteínas de Soja/química , Péptido Hidrolasas/metabolismo , Harina , Antígenos de Plantas/metabolismo , Proteínas de Almacenamiento de Semillas/metabolismo , Péptidos/química , Endopeptidasas/metabolismo , Globulinas/química
8.
Appl Biochem Biotechnol ; 195(6): 3855-3871, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36251112

RESUMEN

Lignocellulose in maize straw includes cellulose, hemicellulose, and lignin, and the degradation of lignocellulose is a complex process in which multiple enzymes are jointly involved. In exploring the co-degradation of a certain substrate by multiple enzymes, different enzymes are combined freely for the achievement of the effective synergism. Additionally, some organic acids and small molecule aromatic compounds can also increase the enzymatic activity of lignin enzymes and improve the degradation rate of lignin. In this study, manganese peroxidase (MnP) from Irpex lacteus (I. lacteus) was heterologously expressed in food-grade Schizosaccharomyces pombe (S. pombe). The multiple enzymes co-fermentation conditions were initially screened by orthogonal tests: 0.5% CaCl2, 1% 10,000 U/g Laccase (Lac), 0.3% MnSO4, and 0.4% glucose oxidase (GOD). It was showed that the lignin degradation rate could reach 65.85% after 3 days of synergistic degradation with the addition of 0.02% Tween-80, 0.5 mM oxalic acid. This indicates that oxalic acid has a promoting effect on the activity of MnP, and the promoting effect is more significant when Tween-80 is complexed with oxalic acid.


Asunto(s)
Lignina , Zea mays , Lignina/metabolismo , Zea mays/metabolismo , Polisorbatos , Peroxidasas/metabolismo , Oxalatos
9.
3 Biotech ; 13(1): 20, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36568499

RESUMEN

This work aimed to investigate the reaction of fusel oil (FO) with pressurized water in a continuous flow reactor, in order to verify the effect of operating conditions (temperature and alcohol to water ratio) on the formation of reaction products, as well as to potentiate the antimicrobial activity of FO. The characterization of the FO was performed by high resolution mass spectrometry (ESI-TOF) and by a chromatograph coupled to mass spectrometry (GC-MS), and the reaction products were characterized by ESI-TOF and evaluated for antifungal potential. From the results, it was verified that the FO contained 70.58 wt% of isoamyl alcohol and was formed mainly by the organic functions alcohols, aldehydes, ketones and lipids. The reaction mechanisms that prevailed during the reactions conducted in subcritical and supercritical states were dehydration and reduction, respectively, making it possible to identify pyrazine derivatives compounds in the reaction products. The fungus Irpex lacteus showed greater resistance under the application of reaction products, and the products obtained at 300 °C and 400 °C showed an inhibition percentage of 96.07% to Schizophyllum commune and 96.50% to Trametes versicolor, respectively. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03429-3.

10.
J Fungi (Basel) ; 8(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36422053

RESUMEN

Tertiary wastewater treatment with microalgae incorporates environmental sustainability with future technologies and high exploitation costs. Despite the apparent ecological benefits of microalgae-assisted wastewater treatment/biomass-based resource production, technological improvements are still essential to compete with other technologies. Bio-flocculation instead of mechanical harvesting has been demonstrated as an alternative cost-effective approach. So far, mostly filamentous fungi of genus Aspergillus have been used for this purpose. Within this study, we demonstrate a novel approach of using white-rot fungi, with especially high potential of algae-Irpex lacteus complex that demonstrates efficiency with various microalgae species at a broad range of temperatures (5-20 °C) and various pH levels. Harvesting of microalgae from primary and secondary wastewater resulted in 73-93% removal efficiencies within the first 24 h and up to 95% after 48 h. The apparent reuse potential of the algae-I. lacteus pellets further complements the reduced operating costs and environmental sustainability of bio-flocculation technology.

11.
Front Chem ; 10: 946835, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35815215

RESUMEN

[This corrects the article DOI: 10.3389/fchem.2022.905108.].

12.
Front Chem ; 10: 905108, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35655702

RESUMEN

Bacteria produce a large number of virulence factors through the quorum sensing (QS) mechanism. Inhibiting such QS system of the pathogens without disturbing their growth is a potential strategy to control multi-drug-resistant pathogens. To accomplish this, two new tremulane-type sesquiterpenoids, irpexolaceus H (1) and I (2), along with two known furan compounds, irpexlacte B (3) and C (4), were isolated from Orychophragmus violaceus (L.) OE Schulz endophytic fungus Irpex lacteus (Fr.) Fr. Their structures were elucidated by detailed spectroscopic data (NMR, HRESIMS, IR, and UV), single-crystal X-ray diffraction, and electronic circular dichroism (ECD) analysis. Furthermore, those compounds were evaluated for anti-quorum sensing (anti-QS) activity, and compound 3 was found contributing to the potential QS inhibitory activity.

13.
Folia Microbiol (Praha) ; 67(6): 851-860, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35678982

RESUMEN

Cordycepin is an essential nucleoside antibiotic with a broad spectrum of physiological functions, which is currently produced by the fermentation of Cordyceps militaris. Even though numerous efforts were made to enhance cordycepin production, the cordycepin yield is still limited. High-cordycepin-yielding strains are still a prerequisite for industrial cordycepin production in large amounts. Screening high-cordycepin-yielding strains from other sources may break new grounds for cordycepin. In this study, Cordyceps hawkesii Gray, with high homology to C. militaris, was selected as the source to screen the cordycepin manufacturing endophytic fungi. Four isolates capable of cordycepin production were successfully obtained among all isolated endophytic fungi. One of the four with better cordycepin yield was identified as Irpex lacteus CHG05, which belongs to the Phlebia species. The response surface methodology was applied to optimize the culture conditions for cordycepin fermentation. 162.05 mg/L of cordycepin with a 53.1% improvement was achieved compared to the original conditions. This study indicates that the endophytic fungi from C. hawkesii Gray could produce cordycepin and served as the first report for cordycepin by the white-rot fungus of I. lacteus. Even though the yield is low compared to C. militaris, this strain provided another choice for enhanced cordycepin in the future.


Asunto(s)
Cordyceps , Desoxiadenosinas
14.
Appl Microbiol Biotechnol ; 106(3): 1299-1311, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35075520

RESUMEN

Enzymes offer interesting features as biological catalysts for industry: high specificity, activity under mild conditions, accessibility, and environmental friendliness. Being able to produce enzymes in large quantities and having them available in a stable and reusable form reduces the production costs of any enzyme-based process. Agricultural residues have recently demonstrated their potential as substrates to produce ligninolytic enzymes by different white rot fungi. In this study, the biotechnological production of a manganese peroxidase (MnP) by Irpex lacteus was conducted through solid-state fermentation (SSF) with wheat straw as substrate and submerged fermentation (SmF) employing wheat straw extract (WSE). The obtained enzyme cocktail also showed manganese-independent activity (MiP), related to the presence of a short MnP and a dye-decolorizing peroxidase (DyP) which was confirmed by shotgun proteomic analyses. In view of the enhanced production of ligninolytic enzymes in SmF, different parameters such as WSE concentration and nitrogen source were evaluated. The highest enzyme titers were obtained with a medium formulated with glucose and peptone (339 U/L MnP and 15 U/L MiP). The scale-up to a 30 L reactor achieved similar activities, demonstrating the feasibility of enzyme production from the residual substrate at different production scales. Degradation of five emerging pollutants was performed to demonstrate the high oxidative capacity of the enzyme. Complete removal of hormones and bisphenol A was achieved in less than 1 h, whereas almost 30% degradation of carbamazepine was achieved in 24 h, which is a significant improvement compared to previous enzymatic treatments of this compound. KEY POINTS: • Wheat straw extract is suitable for the growth of I. lacteus. • The enzyme cocktail obtained allows the degradation of emerging contaminants. • Mn-dependent and Mn-independent activities increases the catalytic potential.


Asunto(s)
Basidiomycota , Ríos , Basidiomycota/metabolismo , Fermentación , Oxidorreductasas/metabolismo , Peroxidasas/metabolismo , Proteómica
15.
Phytochemistry ; 194: 112996, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34844037

RESUMEN

Nine undescribed compounds, including six tremulane-type sesquiterpenoids, irpexolaceus A-F, one phenolic bisabolane-type sesquiterpenoid, irpexolaceus G, and two furan derivatives, irpexonjust A-B, as well as eight known analogs, were isolated from an endophytic fungus (Irpex lacteus OV38) of Orychophragmus violaceus (L.) O.E. Schulz, a Chinese medicinal and edible plant. The structures of these natural compounds were elucidated based on NMR, HRESIMS, single-crystal X-ray diffraction, and ECD spectroscopic data. Among the tested isolates (50 µg/mL), the inhibitory effects of irpexolaceus A, C, D, F, and G, irpexonjust B, and irpexlacte B against NO release from LPS-induced RAW 264.7 cells were higher than 45%, while irpexlacte C (42.6%), irpexolaceus B (39.6%), irpexonjust A (43.7%), and irpexolaceus E (33.6%) exhibited weaker inhibitory effects on the release of NO.


Asunto(s)
Sesquiterpenos , Animales , Hongos , Furanos/farmacología , Ratones , Polyporales , Células RAW 264.7 , Sesquiterpenos/farmacología
16.
Nat Prod Res ; 36(3): 862-867, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32791858

RESUMEN

A new tremulane sesquiterpene, lactedine (1), along with seven known tremulane sesquiterpenes (2-8) and one known triterpene (9) were isolated from the fungus Irpex lacteus. Their structures were established on the basis of extensive spectroscopic data and DP4+ probability analyses.


Asunto(s)
Polyporales , Sesquiterpenos , Fermentación , Hongos
17.
Nat Prod Res ; 36(15): 3833-3839, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33599175

RESUMEN

Two undescribed disubstituted pyridine derivatives irpexidines A and B (1 and 2) and two undescribed alkylfuran derivatives irpexins K and L (3 and 4) were isolated from fermentation broth of Irpex lacteus. Their structures were established by extensive spectroscopic methods. The pyridine derivatives from this fungus were reported for the first time. The new compounds were evaluated for their cytotoxicity against Hela cancer cell and inhibitory activity on NO production.


Asunto(s)
Polyporales , Hongos , Furanos/farmacología , Polyporales/química , Piridinas/farmacología
18.
Bioprocess Biosyst Eng ; 45(1): 227-236, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34626233

RESUMEN

The objective of this study was aiming at developing an efficient strategy to promote enzymatic hydrolysis of naked oat straw and deciphering the potential mechanism. Irpex lacteus and Phlebia acerina were employed to inoculated on the naked oat straw for 4 weeks which the changes of fiber components, fermentation losses, lignin-degrading enzymes production pattern were determined weekly. Furthermore, the 72 h enzymatic hydrolysis of ultimately fermented naked oat straw were also evaluated. The acid detergent lignin was degraded at about 25% along with the moderate dry matter and cellulose loss which both showed selective degradation. The lignin-degrading enzymes production patterns of the two fungi were different which lignin peroxidase was not detected in Irpex lacteus treatment. In addition, the activities of cellulolytic enzymes were higher in Phlebia acerina treatment. After 72 h enzymatic hydrolysis, the reducing sugar content and hydrolysis yield pretreated by Irpex lacteus was 12.92 g/L and 69.49%, respectively. It was much higher than that in sterilized substrate and Phlebia acerina treatment. Meanwhile, the hydrolysis yields of glucose, sum of xylose and arabinose were all improved by Irpex lacteus which were 30.96% and 25.62%, respectively, and showed significant enhancements compared to control and Phlebia acerina treatment. Irpex lacteus is one of effective white rot fungi which could promote the enzymatic hydrolysis of naked oat straw obviously.


Asunto(s)
Avena/química , Enzimas/metabolismo , Polyporales/química , Hidrólisis
19.
Fitoterapia ; 155: 105035, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34537276

RESUMEN

The investigation of the metabolites from endophyte Irpex lacteus cultured in host "tian ma" (Gastrodia elata) revealed five new tremulane sesquiterpenes (1-5), and a new tetrahydrofuran derivative (6). Compound 1 was the first tremulane glucoside, and 6 possessed a rare tetrahydropyran-tetrahydrofuran scaffold. Main metabolite (2,3-dihydroxydodacane-4,7-dione, 14) from I. lacteus showed significant selectivity for antifungal activity against phytopathogen and endophytes associated with G. elata rather than against Armillaria sp. providing nutrition for the host G. elata. 14 accounted for 27.4% of isolated compounds from G. elata medium, and 69.3% by co-culturing with Armillaria sp. So the I. lacteus tended to promote the growth of Armillaria sp. in co-culture by producing 2,3-dihydroxydodacane-4,7-dione (14) to selective inhibit the phytopathogen and endophyte existed in host G. elata for the benefit of G. elata-Armillaria symbiosis. And the results were in accord with the real environment of G. elata depending on the nutrition of Armillaria. Some metabolites had anti-fungal activities against phytopathogens of G. elata with MICs ≤8 µg/mL.


Asunto(s)
Fungicidas Industriales/farmacología , Gastrodia/microbiología , Polyporales/química , Sesquiterpenos/farmacología , Armillaria/crecimiento & desarrollo , China , Endófitos/química , Fungicidas Industriales/aislamiento & purificación , Estructura Molecular , Semillas/microbiología , Sesquiterpenos/aislamiento & purificación
20.
Biotechnol Biofuels ; 14(1): 128, 2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059116

RESUMEN

BACKGROUND: Dye-decolorizing peroxidases (DyPs) represent a novel family of heme peroxidases that use H2O2 as the final electron acceptor to catalyze the oxidation of various organic compounds. A DyP from Irpex lacteus F17 (Il-DyP4, corresponding to GenBank MG209114), obtained by heterologous expression, exhibits a high catalytic efficiency for phenolic compounds and a strong decolorizing ability toward various synthetic dyes. However, the enzyme structure and the catalytic residues involved in substrate oxidation remain poorly understood. RESULTS: Here, we obtained a high-resolution structure (2.0 Å, PDB: 7D8M) of Il­DyP4 with α-helices, anti-parallel ß-sheets and one ferric heme cofactor sandwiched between two domains. The crystal structure of Il­DyP4 revealed two heme access channels leading from the enzyme molecular surface to its heme region, and also showed four conserved amino acid residues forming the pocket for the conversion of hydrogen peroxide into the water molecule. In addition, we found that Trp264 and Trp380, were two important residues with different roles in Il­DyP4, by using site-directed mutagenesis and an electron paramagnetic resonance (EPR) study. Trp264 is a noncatalytic residue that mainly is used for maintaining the normal spatial conformation of the heme region and the high-spin state of heme Fe3+ of Il­DyP4, while Trp380 serves as the surface-exposed radical-forming residue that is closely related to the oxidation of substrates including not only bulky dyes, but also simple phenols. CONCLUSIONS: This study is important for better understanding the catalytic properties of fungal DyPs and their structure-function relationships.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...